
Big Data:
Scale Down, Scale Up, Scale Out

Phillip B. Gibbons

Intel Science & Technology Center
for Cloud Computing

Keynote Talk at IPDPS’15
May 28, 2015

2© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

ISTC for Cloud Computing

Underlying Infrastructure
enabling the future
of cloud computing

www.istc-cc.cmu.edu

$11.5M over 5 years + 4 Intel researchers. Launched Sept 2011

25 faculty
87 students

(CMU + Berkeley, GA Tech,
Princeton, Washington

4© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

Big Data Performance Challenge

whenever the volume or velocity of data
overwhelms current processing systems/techniques,

resulting in performance that falls far short of desired

Many other challenges, including:

• variety of data, veracity of data
• analytics algorithms that scale
• programming
• security, privacy
• insights from the data, visualization

This talk: Focus on performance as key challenge

5© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

How to Tackle the
Big Data Performance Challenge

Three approaches to improving performance by
orders of magnitude are:

• Scale down the amount of data processed or
the resources needed to perform the processing

• Scale up the computing resources on a node,
via parallel processing & faster memory/storage

• Scale out the computing to distributed nodes
in a cluster/cloud or at the edge

6© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

Scale down the amount of data processed or

the resources needed to perform the processing

Goal: Answer queries much faster/cheaper than
brute force

• Specific query?

• Family of queries?

• Retrieval?

• With underlying common subquery (table)?

• Aggregation?

memoized answer

good index

materialized view

data cube

Important Scale Down tool: approximation
(w/error guarantees)

7© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

• Scale Down Insight:
Often EXACT answers not required

– DSS applications usually exploratory: early feedback
to help identify “interesting” regions

– Preview answers while waiting. Trial queries

– Aggregate queries: precision to “last decimal” not
needed

SQL Query

Exact Answer

Decision
Support
Systems

(DSS)
Long Response Times!

Big Data Queries circa 1995

8© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

Often, only interested in leading digits of answer

E.g., Average salary for…

$59,152.25 (exact) in 10 minutes

$59,000 +/- $500 (with 95% confidence) in 10 seconds

Fast Approximate Answers

Original
Data

(PB/TB)

Synopsis
(GB/MB)

statistical
summarization

Orders of magnitude speed-up because synopses
are orders of magnitude smaller than original data

9© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

The Aqua Architecture

Picture without Aqua

Data

Ware-

house

SQL

Query Q

Network

Q

Result
HTML

XML

Warehouse

Data Updates

Browser

Excel

[Sigmod’98,…]

10© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

The Aqua Architecture

Picture with Aqua:

– Aqua is middleware, between client & warehouse
(Client: + error bound reporting. Warehouse SW: unmodified)

– Aqua Synopses are stored in the warehouse

– Aqua intercepts the user query and rewrites it to be a query Q’
on the synopses. Data warehouse returns approximate answer

Rewriter

Data

Ware-

house

SQL

Query Q

Network

Q’

Result
(w/ error bounds)

HTML

XML

Warehouse

Data Updates

AQUA

Synopses

AQUA

Tracker

Browser

Excel

[Sigmod’98,…]

11© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

Precomputed, Streaming Synopses

Our Insights (circa 1996)

• Precomputed is often faster than on-the-fly

– Better access pattern than sampling

– Small synopses can reside in memory

• Compute synopses via one pass streaming

– Seeing entire data is very helpful: provably & in

practice (Biased sampling for group-bys, Distinct value

sampling, Join sampling, Sketches & other statistical functions)

– Incrementally update synopses as new data arrives

Bottom Line:
Orders of magnitude faster on DSS queries

12© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

Example: Distinct-Values Queries

select count(distinct o_custkey) Example using

from orders TPC-D/H/R

where o_orderdate >= ‘2014-05-28’ schema

• How many distinct customers placed orders
in past year?

– Orders table has many rows for each customer,
but must only count each customer once
& only if has an order in past year

select count(distinct target-attr)

from rel Template

where P

13© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

Distinct-Values Query Approaches

• Estimate from Random Sample

– Statistics, Databases, etc

– Lousy in practice

– [Charikar’00] Need linear sample size

• Flajolet-Martin‘85

– One-pass algorithm, stores O(log u) bits

– Only produces count, can’t apply a predicate

• Our Approach: Distinct Sampling

– One-pass, stores O(t * log u) tuples

– Yields sample of distinct values, with up to t-size
uniform sample of rows for each value

– First to provide provably good error guarantees

7 3
3 7 9 1

7 6
5 distinct?

50 distinct?

10% sample

u=universe size

[VLDB’01]

14© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

Accuracy vs. Data Skew

1

2

3

4

5

6

7

0 0.5 1 1.5 2 2.5 3 3.5 4

Distinct
Sampling

GEE

AE

Zipf Parameter

R
a
ti

o
 E

r
r
o

r

Over the entire range of skew :

• Distinct Sampling has 1.00-1.02 ratio error

• At least 25 times smaller relative error than GEE and AE

Data set size = 1M
Sample sizes = 1%

[VLDB’01]

15© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

Scale Down Today

• Hundreds and hundreds of clever algorithms

– Synopsis-based approximations tailored to query families

– Reduce data size, data dimensionality, memory needed, etc

• Synopses routinely used in Big Data analytics
applications at Google, Twitter, Facebook, etc

– E.g., Twitter’s open source Summingbird toolkit

• Hyperloglog – number of unique users who
perform a certain action; followers-of-followers

• CountMin Sketch – number of times each query issued
to Twitter search in a span of time; building histograms

• Bloom Filters – keep track of users who have been
exposed to an event to avoid duplicate impressions
(10^8 events/day for 10^8 users)

[Boykin et al, VLDB’14]

16© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

How to Tackle the
Big Data Performance Challenge

• Scale Down

• Scale Up the computing resources on a node,
via parallel processing & faster memory/storage

• Scale Out

17© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

Why Scale Up when you can Scale Out?

• Much of Big Data focus has been on Scale Out

– Hadoop, etc

• But if data fits in memory of multicore then
often order of magnitude better performance

– GraphLab1 (multicore) is 1000x faster than
Hadoop (cluster)

– Multicores now have 1-12 TB memory: most
graph analytics problems fit!

• Even when data doesn’t fit, will still want to
take advantage of Scale Up whenever you can

18© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

up to 12 TB Main Memory

8
…

45MB Shared L3 Cache

2 HW
threads

32KB

256KB

2 HW
threads

32KB

256KB

18
…

socket

Multicore: 144-core Xeon Haswell E7-v3

45MB Shared L3 Cache

2 HW
threads

32KB

256KB

2 HW
threads

32KB

256KB

18
…

socket

Attach: Hard Drives & Flash Devices

19© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

Hierarchy Trends

• Good performance [energy] requires
effective use of hierarchy

• Hierarchy getting richer

– More cores

– More levels of cache

– New memory/storage technologies

• Flash/SSDs, emerging PCM

• Bridge gaps in hierarchies – can’t just
look at last level of hierarchy

20© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

Hi-Spade:
Hierarchy-Savvy Sweet Spot

Ignoring

p
e
r
fo

r
m

a
n

c
e

programming effort

Platform 1

Platform 2

Hierarchy-
Savvy

Goals: Modest effort, good performance in
practice, robust, strong theoretical foundation

(Pain)-Fully
Aware

21© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

What Yields Good Hierarchy
Performance?

• Spatial locality: use what’s brought in

• Temporal locality: reuse it

• Constructive sharing: don’t step on others’ toes

Two design options
• Cache-aware: Focus on the bottleneck level
• Cache-oblivious: Design for any cache size

L2 CacheShared L2 Cache

CPU2

L1

CPU1

L1

CPU3

L1

e.g., all CPUs write B
at ≈ the same time

B

Stepping on toes

22© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

Multicore Hierarchies’
Key New Dimension: Scheduling

Scheduling of parallel threads has LARGE
impact on hierarchy performance

Key reason: Caches not fully shared

L2 CacheShared L2 Cache

CPU2

L1

CPU1

L1

CPU3

L1

Can mitigate (but not solve)
if can schedule the writes

to be far apart in time

Recall our problem scenario:

all CPUs want to write B
at ≈ the same time

B

23© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

Program-centric Analysis

• Start with a portable program description:
dynamic Directed Acyclic Graph (DAG)

• Analyze DAG without reference to
cores, caches, connections…

Program-centric metrics

• Number of operations (Work, W)

• Length of Critical Path (Depth, D)

• Data reuse patterns (Locality)

Our Goal: Program-centric metrics +
Smart thread scheduler delivering

provably good performance on many platforms

24© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

Parallel Cache Complexity Model

Decompose task into maximal
subtasks that fit in space M
& glue operations

Cache Complexity Q*(M,B) =

Σ Space for M-fitting subtasks
+ Σ Cache miss for every

access in glue

M,B parameters either used
in algorithm (cache-aware)
or not (cache-oblivious)

MM

M

[Simhadri, 2013]

25© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

Space-Bounded Scheduler

Key Ideas:

• Assumes space use (working set sizes) of tasks
are known (can be suitably estimated)

• Assigns a task to a cache C that fits
the task’s working set. Reserves
the space in C. Recurses on the
subtasks, using the CPUs and
caches that share C (below C in the diagram)

…

… …

… …
C

[Chowdhury, Silvestri, Blakeley, Ramachandran IPDPS‘10]

Cache costs: optimal ∑levels Q
*(Mi) x Ci

where Ci is the miss cost for level i caches

[SPAA’11]

Experiments on 32-core Nehalem:
reduces cache misses up to 65% vs. work-stealing

[SPAA’14]

26© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

Sharing vs. Contention

Sharing: operations that
share the same memory
location (or possibly
other resource)

Contention: serialized access
to a resource (potential
performance penalty of
sharing)

Replace concurrent update with Priority Update:
updates only if higher priority than current

Priority Update has Low
Contention under High Sharing

5 runs of 108 operations on 40-core Intel Nehalem

Perform well under high sharing

Perform poorly under
high sharing

[SPAA’13]

*Random
priorities

*

28© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

Further Research Directions

• Determinism at function call abstraction,
Commutative Building Blocks,
Deterministic Reservations for loops,
Use of priority update [PPoPP’12, SPAA’13, SODA’15]

• Scaling Up by redesigning algorithms
& data structures to take advantage of
new storage/memory technologies
[VLDB’08, SIGMOD’10, CIDR’11, SIGMOD’11, SPAA’15]

29© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

How to Tackle the
Big Data Performance Challenge

• Scale Down

• Scale Up

• Scale Out the computing to distributed nodes
in a cluster/cloud or at the edge

30© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

Big Learning Frameworks & Systems

• Goal: Easy-to-use programming framework
for Big Data Analytics that delivers good
performance on large (and small) clusters

• Idea: Discover & take advantage of distinctive
properties of Big Learning algorithms

- Use training data to learn parameters of a model

- Iterate until Convergence approach is common

- E.g., Stochastic Gradient Descent for Matrix Factorization
or Multiclass Logistic Regression; LDA via Gibbs Sampling;
Page Rank; Deep learning; …

Parameter Servers for Distributed ML

• Provides all machines with convenient access to
global model parameters

• Enables easy conversion of single-machine parallel
ML algorithms

▫ “Distributed shared memory” programming style

▫ Replace local memory access with PS access

31

Parameter
Table

UpdateVar(i) {
old = y[i]
delta = f(old)
y[i] += delta

}

UpdateVar(i) {
old = PS.read(y,i)
delta = f(old)
PS.inc(y,i,delta)

}

Single
Machine
Parallel

Distributed
with PS

(one or more
machines)

Worker 1 Worker 2

Worker 3 Worker 4

† Ahmed et al. (WSDM’12), Power and Li (OSDI’10)

The Cost of Bulk Synchrony

32

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

2

3

3

3

3

Threads must wait for each other
End-of-iteration sync gets longer with larger clusters

Precious computing time wasted

Wasted computing time!

Time

But: Fully asynchronous => No algorithm convergence guarantees

Stale Synchronous Parallel (SSP)

Allow threads to usually run at own pace
Fastest/slowest threads not allowed to drift >S iterations apart

Protocol: check cache first; if too old, get latest version from network
Consequence: fast threads must check network every iteration

Slow threads check only every S iterations – fewer network accesses, so catch up!

Iteration0 1 2 3 4 5 6 7 8 9

Thread 1

Thread 2

Thread 3

Thread 4

Staleness Threshold 3
Thread 1 waits until
Thread 2 has reached iter 4

Thread 1 will always see
these updates

Thread 1 may not see
these updates (possible error)

[NIPS’13]

Staleness Sweet Spot

35© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

• Early transmission of larger parameter changes,
up to bandwidth limit

• Find sets of parameters with weak dependency
to compute on in parallel

– Reduces errors from parallelization

• Low-overhead work migration to eliminate
transient straggler effects

• Exploit repeated access patterns of iterative
algorithms (IterStore)

– Optimizations: prefetching, parameter data placement,
static cache policies, static data structures, NUMA
memory management

•

Enhancements to SSP

[SoCC’15]

[SoCC’14]

IterStore: Exploiting Iterativeness

Collaborative Filtering (CF) on NetFlix data set, 8 machines x 64 cores

[SoCC’14]

37© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

Big Learning Systems Big Picture

Framework approaches:

– BSP-style approaches: Hadoop, Spark

– Think-like-a-vertex: Pregel, GraphLab

– Parameter server: Yahoo!, SSP

Tend to revisit the same problems

Ad hoc solutions

Scale
Down/
Up/Out

techniques

Machine
Learning
problems

What is the entire big picture?

38© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

Unified Scale Down, Scale Up,
Scale Out Big Data System?

No system combines all three

Research questions:

– How best to combine: Programming & Performance
challenges

– Scale down techniques for Machine Learning?

E.g., Early iterations on data synopses

– Scale up techniques more broadly applied?
Lessons from decades of parallel computing research

– Scale out beyond the data center?
Lessons from IrisNet project? [Sigmod’03, PC 2003]

39© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

How to Tackle the
Big Data Performance Challenge

Three approaches to improving performance by
orders of magnitude are:

• Scale down the amount of data processed or
the resources needed to perform the processing

• Scale up the computing resources on a node,
via parallel processing & faster memory/storage

• Scale out the computing to distributed nodes
in a cluster/cloud or at the edge

Acknowledgment: Thanks to MANY collaborators

40© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

Appendix

41© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

Slides 9-11:

[Sigmod’98] P. B. Gibbons and Y. Matias. New sampling-based summary statistics for improving approximate
query answers. ACM SIGMOD, 1998.

S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. Join synopses for approximate query answering. ACM
SIGMOD, 1999.

S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. The Aqua approximate query answering system. ACM
SIGMOD, 1999. Demo paper.

S. Acharya, P. B. Gibbons, and V. Poosala. Congressional samples for approximate answering of group-by
queries. ACM SIGMOD, 2000.

N. Alon, P. B. Gibbons, Y. Matias, and M. Szegedy. Tracking join and self-join sizes in limited storage. J. Comput.
Syst. Sci., 2002. Special issue on Best of PODS’99.

M. Garofalakis and P. B. Gibbons. Probabilistic wavelet synopses. ACM TODS, 2004.

Slides 13-14:

[Charikar’00] M. Charikar, S. Chaudhuri, R. Motwani, and V. R. Narasayya. Towards Estimation Error Guarantees
for Distinct Values. ACM PODS, 2000.

[Flajolet-Martin’85] P. Flajolet and G. N. Martin. Probabilistic Counting Algorithms for Data Base Applications. J.
Comput. Syst. Sci., 1985.

[VLDB’01] P. B. Gibbons. Distinct sampling for highly-accurate answers to distinct values queries and event
reports. VLDB, 2001.

Slide 15:

[Boykin et al. VLDB’14] P. O. Boykin, S. Ritchie, I. O'Connell, and J. Lin. Summingbird: A Framework for
Integrating Batch and Online MapReduce Computations. PVLDB 2014.

Slide 24:

[Simhadri, 2013] H. V. Simhadri. Program-Centric Cost Models for Parallelism and Locality. Ph.D. Thesis, 2013.

References (1/3)

42© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

Slide 25:

[Chowdhury, Silvestri, Blakeley, Ramachandran IPDPS‘10] R. A. Chowdhury, F. Silvestri, B. Blakeley, and V.
Ramachandran. Oblivious algorithms for multicores and network of processors. IEEE IPDPS, 2010.

[SPAA’11] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and H. V. Simhadri. Scheduling Irregular Parallel
Computations on Hierarchical Caches. ACM SPAA, 2011.

[SPAA’14] H. V. Simhadri, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and A. Kyrola. Experimental analysis of
space-bounded schedulers. ACM SPAA, 2014.

Slide 27:

[SPAA’13] J. Shun, G. E. Blelloch, J. T. Fineman, and P. B. Gibbons. Reducing contention through priority
updates. ACM SPAA, 2013.

Slide 28:

[PPoPP’12] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and J. Shun. Internally deterministic algorithms can be
fast. ACM PPoPP, 2012.

[SPAA’13] see above

[SODA’15] J. Shun, Y. Gu, G. E. Blelloch, J. T. Fineman, and P. B. Gibbons. Sequential Random Permutation, List
Contraction and Tree Contraction are Highly Parallel. ACM-SIAM SODA, 2015.

[VLDB’08] S. Nath and P. B. Gibbons. Online maintenance of very large random samples on flash storage. VLDB,
2008.

[SIGMOD’10] S. Chen, P. B. Gibbons, and S. Nath. PR-join: A non-blocking join achieving higher result rate with
statistical guarantee. ACM SIGMOD, 2010.

[CIDR’11] S. Chen, P. B. Gibbons, S. Nath. Rethinking database algorithms for phase change memory. CIDR,
2011

[SIGMOD’11] M. Athanassoulis, S. Chen, A. Ailamaki, P. B. Gibbons, and R. Stoica. MASM: Efficient online
updates in data warehouses. ACM SIGMOD, 2011.

References (2/3)

43© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

References (3/3)
[SPAA’15] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu, and J. Shun. Sorting with Asymmetric Read and
Write Costs. ACM SPAA, 2015.

Slide 31:

[Ahmed et al. (WSDM’12)] A. Ahmed, M. Aly, J. Gonzalez, S. M. Narayanamurthy, and A. J. Smola. Scalable
inference in latent variable models. ACM WSDM, 2012.

[Power and Li (OSDI’10)] R. Power and J. Li. Piccolo: Building Fast, Distributed Programs with Partitioned Tables.
Usenix OSDI, 2010.

Slide 33:

[NIPS’13] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. Gibson, G. Ganger, and E. Xing. More
effective distributed ML via a state synchronous parallel parameter server. NIPS, 2013.

Slide 34:

[ATC’14] H. Cui, J. Cipar, Q. Ho, J. K. Kim, S. Lee, A. Kumar, J. Wei, W. Dai, G. R. Ganger, P. B. Gibbons, G. A.
Gibson, and E. P. Xing. Exploiting Bounded Staleness to Speed Up Big Data Analytics. Usenix ATC, 2014.

Slides 35-36:

[SoCC’14] H. Cui, A. Tumanov, J. Wei, L. Xu, W. Dai, J. Haber-Kucharsky, Q. Ho, G. R. Ganger, P. B. Gibbons, G.
A. Gibson, and E. P. Xing. Exploiting iterative-ness for parallel ML computations. ACM SoCC, 2014.

[SoCC’15] J. Wei, W. Dai, A. Qiao, Q. Ho, H. Cui, G. R. Ganger, P. B. Gibbons, G. A. Gibson, and E. P. Xing.
Managed Communication and Consistency for Fast Data-Parallel Iterative Analytics. ACM SoCC, 2015.

Slide 38:

[Sigmod’03] A. Deshpande, S. Nath, P. B. Gibbons, and S. Seshan. Cache-and-query for wide area sensor
databases. ACM SIGMOD, 2003.

[PC 2003] P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan. Irisnet: An architecture for a worldwide sensor
web. IEEE Pervasive Computing, 2003.

44© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

Acknowledgments

The work presented in this talk resulted from
various collaborations with a large number of ,
students, and colleagues. I thank all of my co-
authors, whose names appear in the list of
References.

A number of these slides were adapted from
slides created by my co-authors, and I thank
them for those slides.

